SQL injection

mercredi 4 juin 2025 20:44

La SQLi est une faille de sécurité web qui permet a un attaguant de manipuler les requétes SQL d'une application.
Elle peut permettre de :

o Lire des données sensibles (méme celles d'autres utilisateurs),
¢ Modifier ou supprimer des données,

¢ Parfois, prendre le contréle du serveur ou lancer des attaques (ex. déni de service).

Elle exploite des entrées non sécurisées dans les requétes vers la base de données.

How to detect SQL injection vulnerabilities

Pour détecter cette vulnérabilité on peut tester ces submit :
'OR 1=1
OR 1=2

Sinon voir oscp.

Retrieving hidden data

Imagine a shopping application that displays products in different categories. When the user clicks on the Gifts category, their browser
requests the URL:

https://insecure-website.com/products?category=Gifts

This causes the application to make a SQL query to retrieve details of the relevant products from the database:

SELECT * FROM products WHERE category = 'Gifts' AND released = 1
This SQL query asks the database to return:

« all details (*)
* from the products table
¢ where the category IS Gifts

e and released iS 1

The restriction released = 1 is being used to hide products that are not released. We could assume for unreleased products

1 =

released = 0

Server-side vulnerabilities Page 1

Retrieving hidden data - Continued

The application doesn't implement any defenses against SQL injection attacks. This means an attacker can construct the following attack,
for example:

https://insecure-website.com/products?category=Gifts'——

This results in the SQL query:
SELECT * FROM products WHERE category = 'Gifts'--" AND released = 1
Crucially, note that —— is a comment indicator in SQL. This means that the rest of the query is interpreted as a comment, effectively

removing it. In this example, this means the query no longer includes aND released = 1 .As aresult, all products are displayed,

including those that are not yet released.

You can use a similar attack to cause the application to display all the products in any category, including categories that they don't know
about:

https://insecure-website.com/products?category=Gifts'+0R+1=1--

This results in the SQL query:

SELECT * FROM products WHERE category = 'Gifts' OR 1=1--' AND released = 1

The modified query returns all items where eitherthe category is Gifts,or 1 isequalfo 1.As 1=1 is always true, the query

returns all items.

Warning

Take care when injecting the condition or 1=1 into a SQL query. Even if it appears to be harmless in the context you're injecting
into, it's common for applications to use data from a single request in multiple different queries. If your condition reaches an
UPDATE Or DELETE statement, for example, it can result in an accidental loss of data.

Pour bypasser des users :

Subverting application logic

Imagine an application that lets users log in with a username and password. If a user submits the username wiener and the password

bluecheese , the application checks the credentials by performing the following SQL query:
SELECT * FROM users WHERE username = 'wiener' AND password = 'bluecheese'

If the query returns the details of a user, then the login is successful. Otherwise, it is rejected.

In this case, an attacker can log in as any user without the need for a password. They can do this using the SQL comment sequence —-
to remove the password check from the wuere clause of the query. For example, submitting the username administrator'-- anda

blank password results in the following query:

SELECT * FROM users WHERE username = 'administrator'--' AND password = ''

This query returns the user whose usernams 15 administrator and successfully logs the attacker in as that user.

Server-side vulnerabilities Page 2

